Publications

Papers

  1. Structure-preserving schemes for Cahn–Hilliard equations with dynamic boundary conditions
  2. Makoto Okumura and Takeshi Fukao
    Discrete Contin. Dyn. Syst. Ser. S, 17 (2024), 362–394.
    [Journal Website]
  3. Zonula occludens-1 distribution and barrier functions are affected by epithelial proliferation and turnover rates
  4. Keisuke Imafuku, Hiroaki Iwata, Ken Natsuga, Makoto Okumura, Yasuaki Kobayashi, Hiroyuki Kitahata, Akiharu Kubo, Masaharu Nagayama, and Hideyuki Ujiie
    Cell Prolif., (2023), 1–11.
    [Journal Website]
  5. A second-order accurate structure-preserving scheme for the Cahn–Hilliard equation with a dynamic boundary condition
  6. Makoto Okumura, Takeshi Fukao, Daisuke Furihata, and Shuji Yoshikawa
    Commun. Pure Appl. Anal., 21 (2022), 355–392.
    [Journal Website]
  7. Numerical results for ordinary and partial differential equations describing motions of elastic materials
  8. Chiharu Kosugi, Toyohiko Aiki, Martijn Anthonissen, and Makoto Okumura
    Adv. Math. Sci. Appl., 30 (2021), 387–414.
    [Journal Website]
  9. A new structure-preserving scheme with the staggered space mesh for the Cahn–Hilliard equation under a dynamic boundary condition
  10. Makoto Okumura and Takeshi Fukao
    Adv. Math. Sci. Appl., 30 (2021), 347–376.
    [Journal Website]
  11. A structure-preserving scheme for the Allen–Cahn equation with a dynamic boundary condition
  12. Makoto Okumura and Daisuke Furihata
    Discrete Contin. Dyn. Syst., 40 (2020), 4927–4960.
    [Journal Website]
  13. A stable and structure-preserving scheme for a non-local Allen–Cahn equation
  14. Makoto Okumura
    Jpn. J. Ind. Appl. Math., 35 (2018), 1245–1281.
    [Journal Website]

Misc

  1. 体積保存型Allen-Cahn方程式に対する離散変分導関数法による非線形及び線形スキーム
  2. 奥村 真善美
    第39回発展方程式若手セミナー報告集 (2017), 49-58.